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Introduction

High-Contrast Grating: high index (bars) medium grating  fully immersed in low index medium

Sub-wavelength structure: period smaller than wavelength of the incident  wave

Applications:
• Ultrathin broadband reflectors for VCSEL (replacement for DBR reflectors)
• High-Q resonator mirrors
• Resonant  polarization sensitive filters and beam splitters
• Planar flat focusing mirrors (wavefront shaping)
• Hollow core waveguides (ultracompact optical coupler and filters)
• ….

• Superstrate and substrate are simple low index media (air)
• Refractive index is real and frequency independent 
• Only zero-th diffraction  order is propagating

Recent review ref.: 
C. Chang-Hasnain and W. Yang, "High-contrast gratings for integrated optoelectronics," Adv. Opt. Photon.  4, 379-440 (2012).
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High-Contrast Gratings: modeling

• RCWA/FMM
– All quantities expanded in Fourier series,..

• Other rigorous  numerical methods
– FEM
– FDTD
– …
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Outside the grating  filed is expanded in finite 
number of propagating and evanescent waves!

Eigenvalue problem, pseudo-periodicity,… sinα θ=

Grating Parameters:
Λ - period 
η -the duty
tg - grating height
n(x) - refractive index

Plane Wave Excitation: 
Θ-incidence angle 
k0=2π/λ – wave number
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High-Contrast Gratings: modeling

• Coupled (Bloch) Mode Theory:  
– Periodic waveguide-array modes as an expansion basis
– Several modes are excited in the wavelength range of interest
– Coupling of waveguide-array modes at interfaces
– Dual-mode regime responsible for most of novel phenomena:

(destructive/constructive ) interference between modes

• Effective Medium Theory:
– Assumes single propagating mode: does not capture resonant 

phenomena in the intermediate regime

• HCG as an Photonic Crystal
– photonic bands originate from the “resonance” of the HCG 

supermodes,…

• HCG response in terms of resonant excitation of “leaky” modes 
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Resonance representation of the scattering 
matrix (complex poles /zeros) decomposition
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Spectral features =
Non-resonant background + 
Pole/zero resonance 
contribution

P. Lalanne,  et. al. , J. Lightwave
Technol.  24, 2442 (2006).

V. Karagodsky , et al.  Opt. Express  
20, 10888-10895 (2012).

Adv. Opt. Photon.  4, 379-440 (2012)
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Spectral response tailoring:
how to generate unit cell topology?

Spectral response tailoring : resonances positions, number and shape, etc. 

IniUal design : one that already possesses desired (spectral ) features → reducUon of 

computational burden in design and optimization tasks!

Fundamental  grating parameters for optimization of spectral response (simple unit cell)

• period, thickness, duty cycle, refractive index

Extended feature/parameter set (complex unit cell)

• transition points in the unit cell

• symmetry of the unit cell 

Possible approach to (restricted) topology optimization using the local change in topology  of the unit cell …?

How to generate initial unit cell topology?

• Perturbations (“defects”) in the simple unit cell

• Deterministic aperiodic sequence for multiple transition points

• Randomly generated  transition points
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HCG with the unit cell  topology  

derived from perturbations

Refractive index profile for:
a) basic unit cell;  b)- c) symmetrically perturbed unit cell; d) asymmetrically perturbed unit cell

1) Start with the simple unit cell (defined transition points)
2) Generate new transition points by the “cut and split”  procedure
3) Transition points shift: Δx=pηΛ=pLH

4) Parameter p controls the strength of perturbation
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HCG exhibiting broadband high reflectivity :
symmetric perturbation of the unit cell

Example HCG optimized for broadband reflectivity and
with the small thickness compared to the wavelength.  

Symmetric perturbations :
• Spectral shape does not change (no resonances)! 
• Bandwidth and central wavelength shift

HCG with the: period  Λ=0.620 μm, duty cycle η=0.3548,  height tg=0.140 µm, ng=3.2,n0=1; TE-polarization 
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HCG resonances  with  the symmetric 

and asymmetric perturbations of the unit cell

Transition points shift: ∆x=pηΛ

a) p=0.025
b) P= 0.05
c) p= 0.075 
d) p=0.1

HCG with the: period  Λ=0.620 μm, duty cycle η=0.3548,  height tg=0.140 µm, ng=3.2,n0=1; TE-polarization 

a)

b)

c)

d)

• Symmetry breaking  is the origin of spectral  resonances! 
• Excitation of previously non-excited modes…
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HCG exhibiting broadband high reflectivity :
resonances under the oblique incidence

• Resonances (spectral reflectivity  “anomalies”) appear under the oblique incidence!
• Higher  diffraction order(s)  become(s) propagating under the oblique incidence!

HCG with the: period  Λ=0.620 μm, duty cycle η=0.3548,  height tg=0.140 µm, ng=3.2,n0=1; TE-polarization 
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HCG reflectivity: the symmetric 
and asymmetric perturbations of the unit cell

Spectral reflectivity :   periodic structure (left), symmetrically perturbed structure with parameter p=0.1 
(middle) and asymmetrically perturbed structure with the parameter p=0.1 (right)



HCG reflectivity: randomly generated
(asymmetric) transition points within unit cell
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• Transition points in the unit cell generated from uniform distribution in the interval (0,1)
• Total  thickness constrained to be within 1%  difference from the  initial unit cell



13

HCG exhibiting high-Q resonances:

simple unit cell

Deep subwavelength regime

Near-wavelength regime

Diffraction regime 

HCG with the: period  Λ=0.716μm, duty cycle η=0.7,  height tg=1.494µm, ng=3.48,n0=1; TE-polarization 
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HCG exhibiting high-Q resonances:

symmetrically perturbed  unit cell

Reflectivity for a symmetrically perturbed structure with p=0.1 (solid) and unperturbed structure (dashed)

|Ey|  in simple unit cell  structure  close to  resonance  2.16354;  |Ey|  for the perturbed structure at resonance 2.1641

Resonance line shape (“switch”):  Lorentzian ↔ Fano type!
Unit cell symmetry preserved  under perturbation! HCG with the: period  

Λ=0.716μm, duty cycle 
η=0.7,  height 
tg=1.494µm, 
ng=3.48,n0=1; TE-
polarization 
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HCG exhibiting high-Q resonances:

asymmetrically perturbed  unit cell

Original structure 

operates  in the “deep” 

subwavelength regime! 

Breaking the symmetry in 

the unit cell enables 

excitation of resonances!

|Ey|  close to resonances 2.6966,  2.9337, 3.107  respectively.

Spectral reflectivity for periodic (dashed) and 
asymmetrically perturbed structure (solid) Angular dependence at resonance!
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a) basic periodic structure  
b) scaled structure according to 3rd 
generation of Thue-Morse 
sequence 
c) scaled structure according to 4th 
generation of Thue-Morse 
sequence

HCG unit cell transition points 

deterministically generated from aperiodic sequence

Photonic aperiodic superlattices ( photonic quasi-crystals) offer rich variety of complex patterns…

Aperiodic sequence of letters over finite alphabet:
• Associate letters of the sequence with the high- or low- index material  (H) and (L)
• Example: Thue-Morse (model aperiodic) sequence formed by substitutions  L→HL  and H → LH

Generate transition points by re-scaling  initial structure:

1. Start with initial simple unit cell: η-duty cycle, Λ –period 
2. Select generation (n) with the NH=NL=2n (number of letters in the sequence) 
3. Scaled (normalized) thicknesses:  lH=η/NH and lL=(1-η)/NH

4. Generate transition points according to chosen sequence (reputed letter interpreted as double thicknesses)
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HCG reflectivity:
3rd generation Thue-Morse sequence based unit cell

• Additional resonances not present in the simple unit cell HCG
• Localization of  field (“hot spots”) outside the grating bars
• Resonances moved into the (previously) deep subwavelength

domain

HCG with the: period  
Λ=0.716μm, duty cycle 
η=0.7,  height 
tg=1.494µm, 
ng=3.48,n0=1; TE-
polarization 
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• Hierarchical fragmentation of the spectral response
• Increasing the number of resonances in the given spectral range
• Unit cell symmetry switches between subsequent generations

• What is the largest generation number accessible subject to   fabrication resolution and tolerances? 

HCG reflectivity  for 3rd & 4th generation 
Thue-Morse sequence based unit cell



19

Concluding remarks / Questions 

Summary;

• HCG unit cell topology  influences strongly the spectral response and field distributions 
• Symmetry of the unit cell (perturbations) plays major role in shaping spectral reflectivity response under normal 

and oblique incidence (number and position of resonances)
• Spectral resonance line shape and field localization  may  be controlled with complex  unit cells:

– Lorentzian shape transforms into the Fano-type resonance shape and vice versa under perturbations
– Resonances introduced into the (previously) deep subwavelength region
– Formation of the “hot-spots “ in the free space

• Unit cell designed using deterministic aperiodic sequences gives rise to a highly fragmented spectral response 
displaying hierarchical structure 

• Designed  complex unit cell topology  as a the efficient initial topology prior to global optimization procedure

Questions: 
• Is there an optimal choice of initial unit cell topology ?
• Choice of  modeling method?
• Stability of resonances under fabrication resolution and  tolerances ?
• Conditions and constraints for robust topology optimization ?
• …..
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Thank you for the attention!
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